3. Number theory and Matrices

Section 3.4: The Integers and Division

Division:

Let $a, b \in \mathbf{Z}$ with $a \neq 0$.

- $a \mid b \equiv$ " a divides b ".

We say that " a is a factor of b ", " a is a divisor of b ", and " b is a multiple of a ".

- a does not divide b is denoted by $a \nmid b$.
- We can express $a \mid b$ using the quantifier

$$
\exists c \quad(b=a c), \text { Domain }=\mathbf{Z}
$$

$3 \mid-12 \Leftrightarrow$ True, but $3 \mid 7 \Leftrightarrow$ False.

The Divides Relations

- For every $a, b, c \in \mathbf{Z}$, we have

1. If $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
2. If $a \mid b$, then $a \mid b c$.
3. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Examples:

- $3 \mid 12$ and $3|9 \rightarrow 3|(12+9) \rightarrow 3 \mid 21(21 \div 3=7)$
- $2|6 \rightarrow 2|(6 \times 3) \rightarrow 2 \mid 18(18 \div 2=9)$
- $4 \mid 8$ and $8|64 \rightarrow 4| 64 \quad(64 \div 4=16)$

The Division Algorithm

- let a be an integer and d a positive integer, then there exist unique integers q and r such that:

$$
a=d \times q+r, 0 \leq r<d .
$$

- d is called divisor and a is called dividend.
- q is the quotient and r is the remainder (positive integer).

$$
q=a \operatorname{div} d, r=a \bmod d
$$

Examples

- What are the quotient and remainder when 101 is divided by 11 ?

$$
101=11 \times 9+2
$$

$q=101 \mathrm{div} 11=9, r=101-11 \times 9=2=101 \bmod 9$

- What are the quotient and the remainder when -11 is divided by 3 ?

$$
-11=3 \times(-4)+1, q=-4, r=1
$$

- Note:

$$
\begin{aligned}
& \left.q=-11 \operatorname{div} 3=\frac{-11}{3}\right\rfloor=\lfloor-3.6\rfloor=-4 \\
& r=-11-(-4) \times 3=1=-11 \bmod 3
\end{aligned}
$$

$-11 \neq 3 \times(-3)-2$ because r can't be negative.

Examples

- Find a and b if :

$$
2 a+b=46 \bmod 7 \text { and } a+2 b=47 \operatorname{div} 9 .
$$

$$
\begin{gathered}
46=6 \times 7+4 \text { and } 47=5 \times 9+2 \\
46 \bmod 7=4 \text { and } 47 \operatorname{div} 9=5 \\
2 a+b=4(1) \text { and } a+2 b=5(2) \\
(1)-2(2): \quad-3 b=-6 \\
b=2 \text { and } a=1
\end{gathered}
$$

Section 3.5: Primes and Greatest Common Divisors

- A positive integer $p>1$ is prime if the only positive factors of p are 1 and p.

Some primes: 2, 3, 5, 7, 11, 13, 17, ...

- Non-prime integer greater than 1 are called composite, because they can be composed by multiplying two integers greater than 1.

Fundamental Theorem of Arithmetic

- Every positive integer greater than 1 has a unique representation as a prime or as the product of two or more primes where the prime factors are written in order of non-decreasing size. (tree or division)

$$
\begin{aligned}
& 100=2 \cdot 2 \cdot 5 \cdot 5=2^{2} 5^{2} \\
& 13=13 \\
& 1024=2 \cdot 2 \cdot 2=2^{10}
\end{aligned}
$$

lits

Theorem

- If n is a composite integer, then n has prime divisor $\leq \sqrt{n}$.
e.g. $49 \rightarrow$ prime numbers less than $\sqrt{49}$ are 2,3,5,7 $16 \rightarrow$ prime numbers less than $\sqrt{16}$ are 2,3 .
- An integer n is prime if it is not divisible by any prime $\leq \sqrt{n}$.
e.g. 13 where $\sqrt{13}=3.6$ so the prime numbers are 2,3 but non of them divides 13 so 13 is prime.

Prime Factorization Technique

- To find the prime factor of an integer n : 1 . Find \sqrt{n}.

2. List all primes $\leq \sqrt{n}$,

$$
2,3,5,7, \ldots, \text { up to } \sqrt{n} .
$$

3. Find all prime factors that divides n.

Example 1

Ex: Show that 100 is composite?
Sol.

1) $\sqrt{100}=10$
2) So the number may be divided by: 2, 3,5,7 only (all primes less than 10)
3) $2 \mid 100$ since $100 / 2=50$

The number 100 is not prime, So it is composite.

Example 2

Ex: Show that 101 is prime?
Sol.

1) $\sqrt{101} \approx 10$
2) So the number may be divided by: 2, 3,5,7 orily (all primes less than 10)
3) $2 \nmid 101 \quad 3 \not 101 \quad 5 \nmid 101 \quad 7 \nmid 101$

101 is not divided by $2,3,4,5$, or 7
\therefore The number 101 is prime

Example 3

Ex: find the prime factors of 7007 ?

1) $\sqrt{7007}: 83$
2) So the number may be divided by: $2,3,5,7,11,13,17,19 \ldots<83$ (all primes less than 83)
3) $\frac{7007}{7}=1001 \quad \frac{1001}{7}=143$
$\frac{143}{11}=13 \quad \frac{13}{13}=1$
$7007=7 \times 7 \times 11 \times 13=7^{2} \times 11 \times 13$

Discrete Mathematics

Matrices

Section 3.8: Matrices

- An $m \times n$ matrix is a rectangular array of $m n$ objects (usually numbers) arranged in m horizontal rows and n vertical columns.
- An $n \times n$ matrix is called a square matrix, whose order is n.

$$
\left[\begin{array}{rr}
2 & 3 \\
5 & -1 \\
7 & 0
\end{array}\right]_{3 \times 2} \quad\left[\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right]_{2 \times 2}
$$

Matrix Equality

- Two matrices A and B are equal if and only if they have the same number of rows, the same number of columns, and all corresponding elements are equal.

$$
\left[\begin{array}{cc}
3 & 2 \\
-1 & 6
\end{array}\right] \neq\left[\begin{array}{ccc}
3 & 2 & 0 \\
-1 & 6 & 0
\end{array}\right]
$$

Row and Column Order

- The rows in a matrix are usually indexed 1 to m from top to bottom. The columns are usually indexed 1 to n from left to right. Elements are indexed by row, then column.

$$
A=\left[a_{i j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

Matrix Sums

- The sum $A+B$ of two matrices A, B (which must have the same number of rows, and the same number of columns) is the matrix given by adding corresponding elements.
- $A+B=\left[a_{i j}+b_{i j}\right]$

$$
\left[\begin{array}{rr}
2 & 6 \\
0 & -8 \\
1 & 2
\end{array}\right]+\left[\begin{array}{rr}
7 & -5 \\
4 & -1 \\
3 & 6
\end{array}\right]=\left[\begin{array}{rr}
9 & 1 \\
4 & -9 \\
4 & 8
\end{array}\right]
$$

Matrix Products

For an $m \times k$ matrix A and a $k \times n$ matrix B, the product $A B$ is the $m \times n$ matrix:

$$
A B=C=\left[c_{i j}\right] \equiv\left[\sum_{p=1}^{k} a_{i p} b_{p j}\right]
$$

i.e. The element (i, j) of $A B$ is given by the vector dot product of the $i^{\text {th }}$ row of A and the $j^{\text {th }}$ column of B (considered as vectors).

Note: Matrix multiplication is not commutative!

Matrix Product Example

$$
\left[\begin{array}{ccc}
0 & 1 & -1 \\
2 & 0 & 3
\end{array}\right]\left[\begin{array}{rrrr}
0 & -1 & 1 & 0 \\
2 & 0 & -2 & 0 \\
1 & 0 & 3 & 1
\end{array}\right]=\left[\begin{array}{ccrr}
1 & 0 & -5 & -1 \\
3 & -2 & 11 & 3
\end{array}\right]
$$

Identity Matrices

- The identity matrix of order n, I_{n}, is the order- n matrix with 1's along the upper-left to lower-right diagonal and 0's everywhere else.
- $A I_{n}=A$

$$
I_{n}=\left[\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \text { if } i \neq j
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]\right.
$$

Powers of Matrices

- If A is an $n \times n$ square matrix and $p \geq 0$, then:

$$
\begin{aligned}
& A^{p} \underbrace{\equiv A A A \cdots A}_{p \text { times }}\left(A^{0} \equiv I_{n}\right) \\
& {\left[\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right]^{3} }=\left[\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right] \\
&=\left[\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{rr}
3 & 2 \\
-2 & -1
\end{array}\right]=\left[\begin{array}{rr}
4 & 3 \\
-3 & -2
\end{array}\right]
\end{aligned}
$$

Matrix Transposition

- If A is an $m \times n$ matrix, then the transpose of A is the $n \times m$ matrix A^{T} given by interchanging the rows and the columns of A.

$$
A=\left[\begin{array}{ccc}
2 & 1 & 3 \\
0 & -1 & -2
\end{array}\right] \Rightarrow A^{T}=\left[\begin{array}{rr}
2 & 0 \\
1 & -1 \\
3 & -2
\end{array}\right]
$$

Symmetric Matrices

- A square matrix A is symmetric if and only if A^{T} $=A$.
- Which is symmetric?

$$
\left.\begin{array}{c}
A \\
{\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right]}
\end{array} \begin{array}{c}
C \\
1 \\
3
\end{array} \begin{array}{rrr}
-2 & 1 & 3 \\
-1 & 2
\end{array}\right]\left[\begin{array}{rrr}
3 & 0 & 1 \\
0 & 2 & -1 \\
1 & 1 & -2
\end{array}\right]
$$

Zero-One Matrices

All elements of a zero-one matrix are 0 or 1, representing False \& True respectively.

- The join of A and B (both $m \times n$ zero-one matrices) is

$$
A \vee B: \equiv\left[a_{i j} \vee b_{i j}\right]
$$

- The meet of A and B is:

$$
A \wedge B \equiv\left[a_{i j} \wedge b_{i j}\right]
$$

Example

$$
A=\left[\begin{array}{lll}
1 & \mathrm{O} & 1 \\
\mathrm{O} & 1 & \mathrm{O}
\end{array}\right] \quad B=\left[\begin{array}{lll}
\mathrm{O} & 1 & \mathrm{O} \\
1 & 1 & \mathrm{O}
\end{array}\right]
$$

- The join between A and B is $A \vee B=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$
- The meet between A and B is $A \wedge B=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$

Boolean Products

- Let A be an $m \times k$ zero-one matrix and B be a $k \times n$ zero-one matrix,
- The Boolean product $A \odot B$ of A and B is like normal matrix product, but using \vee instead + and using \wedge instead \times.

Boolean Powers

- For a square zero-one matrix A, and any $k \geq 0$, the $k^{\text {th }}$ Boolean power of A is simply the Boolean product of k copies of A.

$$
A^{[k]} \equiv A \odot A \odot \ldots \odot A
$$

k times

Example

$$
\text { Let } \begin{aligned}
A & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \\
A \odot B & =\left[\begin{array}{l}
(1 \wedge 1) \vee(0 \wedge 0)(1 \wedge 1) \vee(0 \wedge 1)(1 \wedge 0) \vee(0 \wedge 1) \\
(0 \wedge 1) \vee(1 \wedge 0)(0 \wedge 1) \vee(1 \wedge 1)(0 \wedge 0) \vee(1 \wedge 1) \\
(1 \wedge 1) \vee(0 \wedge 0)(1 \wedge 1) \vee(0 \wedge 1)(1 \wedge 0) \vee(0 \wedge 1)
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

